
A Fuelled Self-Reducer For System T
Using simple types to encode complex ones

Greg Brown
greg.brown01@ed.ac.uk

University of Edinburgh

PEPM ’25

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 1/ 18

Unreadable System T
(* sum : (nat -> nat -> nat -> nat -> nat) -> nat *)
let sum tree =

let depth = tree 0 0 0 0 in
let root = tree 1 0 0 0 in
let heap = tree 2 in
let go : nat -> nat = primrec depth with

Z -> fun i -> 0
| S(acc) -> fun i ->

let (tag, data) = (heap i 0 0, heap i 1) in
if tag == 0 then

data 0
else

acc (data 0) + acc (data 1)
in
go root

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 2/ 18

Outline

1 Type Encodings

2 Self Reducer

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 3/ 18

Unreadable System T
(* sum : (nat -> nat -> nat -> nat -> nat) -> nat *)
let sum tree =

let depth = tree 0 0 0 0 in
let root = tree 1 0 0 0 in
let heap = tree 2 in
let go : nat -> nat = primrec depth with

Z -> fun i -> 0
| S(acc) -> fun i ->

let (tag, data) = (heap i 0 0, heap i 1) in
if tag == 0 then

data 0
else

acc (data 0) + acc (data 1)
in
go root

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 4/ 18

Union Types1

𝐴 ⊔ 𝐵 defined inductively
inl ∶ 𝐴 → 𝐴 ⊔ 𝐵
inr ∶ 𝐵 → 𝐴 ⊔ 𝐵
prl ∶ 𝐴 ⊔ 𝐵 → 𝐴
prr ∶ 𝐴 ⊔ 𝐵 → 𝐵

1Kiselyov, Simply-typed encodings: PCF considered as unexpectedly expressive
programming language

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 5/ 18

System T⊔
(* sum : (n -> (n |+| (n -> n -> (n |+| n |+| (n -> n))))) -> n *)
let sum t =

let depth = prl (tree 0) in
let root = prl (tree 1) in
let heap = prr (tree 2) in
let go : nat -> nat = primrec depth with

Z -> fun i -> 0
| S(acc) -> fun i ->

let (tag, data) = (prl (heap i 0), prr (heap i 1)) in
if tag == 0 then

prl data
else

acc ((prr data) 0) + acc ((prr data) 1)
in
go root

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 6/ 18

Product Types1

𝐴×𝐵 ≔ ℕ → (𝐴 ⊔ 𝐵)
fst p = prl (p 0)
snd p = prr (p 1)
(x, y) = fun i ->

if i == 0 then inl x else inr y

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 7/ 18

System T⊔×
(* sum : (n * n * (n -> (n * (n |+| (n * n))))) -> n *)
let sum tree =

let (depth, root, heap) = tree in
let go : nat -> nat = primrec depth with

Z -> fun i -> 0
| S(acc) -> fun i ->

let (tag, data) = heap i in
if tag == 0 then

prl data
else

let (left, right) = prr data in
acc left + acc right

in
go root

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 8/ 18

Sum Types1

𝐴+𝐵 ≔ ℕ× (𝐴 ⊔ 𝐵)
left x = (0, inl x)
right x = (1, inr x)
either f g x =

let (i, v) = x in
if i == 0 then f (prl v) else g (prr v)

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 9/ 18

System T×+

(* sum : (nat * nat * (nat -> nat + (nat * nat))) -> nat *)
let sum tree =

let (depth, root, heap) = tree in
let go : nat -> nat = primrec depth with

Z -> fun i -> 0
| S(acc) -> fun i ->

match heap i with
Left(data) -> data

| Right(left, right) -> acc left + acc right
in
go root

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 10 / 18

Inductive Types2

Heap with pointers
Need depth for recursion
Store root for efficiency

Br

1

2

Br

3

2Longley and Normann, Higher-Order Computability
Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 11 / 18

System T×+𝜇

(* sum : nat btree -> nat *)
let sum tree = fold tree with

Lf x -> x
| Br(left, right) -> left + right

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 12 / 18

Examples of Regular Types

Examples
Lists 𝜇𝑋.1 + 𝐴 ×𝑋
Binary trees 𝜇𝑋.𝐴 +𝑋2

Finite trees 𝜇𝑋.𝐴 × List 𝑋

Non-Examples
𝜇𝑋.1 + ((𝑋 → ℕ) → ℕ)
𝜇𝑋.𝐴 + (ℕ → 𝑋)

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 13 / 18

Representing Terms

type term =
Var of nat

| Zero
| Suc of term
| Rec of term * term * term
| Abs of term
| App of term * term

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 14 / 18

Parallel Reduction Step

(* step : term -> term *)
step t = fold t with

Rec(z, s, Zero) -> z
| Rec(z, s, Suc t) -> App(s, Rec(z, s, t))
| App(Abs t, u) -> subst t u

| Var n -> Var n
| Zero -> Zero
| Suc t -> Suc t
| Rec(z, s, t) -> Rec(z, s, t)
| Abs t -> Abs t
| App(t, u) -> App(t, u)

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 15 / 18

Computing Normal Forms

(* reduce : nat * term -> term *)
reduce (n, t) =

fold n with
Zero -> t

| Suc t -> step t

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 16 / 18

Future Work

P T T P T

P P S S

I
Done
WIP
Goal

P Primrose
T System T
S Scheme
I Idris 2

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 17 / 18

Summary

Encode regular types in System T
Use for fuelled self-reducer
Ongoing work on implementation

Self-Reducer Compiler

Greg Brown greg.brown01@ed.ac.uk A Fuelled Self-Reducer For System T 18 / 18

	Type Encodings
	Self Reducer

